CENTRA

Mangalore

10CS63

Sixth Semester B.E. Degree Examination, Dec.2015/Jan.2016

Compiler Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. With the help of a diagram, explain the various phases of a compiler. (10 Marks)
 - b. What is meant by input buffering? Write an algorithm for look ahead code with sentinels.
 - c. Construct transition diagram to recognize the tokens below

 i) identifier

 ii) Relational operator

 iii) unsigned number.

 (04 Marks)

 (06 Marks)
- 2 a. With a neat diagram explain the role of a parser. (05 Marks)
 - b. Explain different error recovery strategies. (08 Marks)
 - c. Consider the context free grammar $S \rightarrow SS + |SS|^* |a|$ And the string $aa + a^*$
 - i) Give a left most derivation for the stringii) Give a right most derivation for the string
 - iii) Give a parse tree for the string
 - iv) Is the grammar ambiguous or unambiguous? Justify.
 - v) Describe the language generated by this grammar
 - vi) Remove the left recursion from the grammar?
 - vii) Left factor this grammar.

(07 Marks)

- 3 a. Given the grammar
 - $S \rightarrow a \mid (L), L \rightarrow L, S \mid S$
 - i) Do the necessary changes to make it suitable for LL(1) parser
 - ii) Check the resultant grammar is LL (1) or not
 - iii) Show the moves made by the predictive parser on the input (a, (a, a)). (12 Marks)
 - b. What is meant by handle pruning? List the actions of a shift reduce parser. Consider the following grammar
 - $S \rightarrow TL$;
 - $T \rightarrow int \mid float$
 - $L \rightarrow L$, id | id parse the input string int id, id; using shift reduce parser.

(08 Marks)

- 4 a. Given the grammar
 - $S \rightarrow AA$
 - $A \rightarrow Aa \mid b$
 - i) Construct sets of LR(1) items
 - ii) Construct canonical LR(1) parsing table (12 Marks)
 - b. How LALR parsing table is constructed? Develop an algorithm for the same. (08 Marks)

PART - B

- Give the syntax directed definition to process a sample variable declaration in C and construct dependency graph for the input float x, y, z.
 - b. Write the grammar and syntax directed definitions for a simple desk calculator and show annotated parse tree for the expression 3*5 + 4n. (10 Marks)
- a. Draw the DAG for the arithmetic expression a + a * (b - c) + (b - c)*d. Show the steps for constructing the DAG. (10 Marks)
 - b. What are three address codes? Explain different ways of representing three address codes, with examples. (10 Marks)
- a. Distinguish between static scope and dynamic scope. Briefly explain access to non local 7 names in static scope. (10 Marks)
 - b. Explain in detail, the strategy for reducing fragmentation in heap memory. (10 Marks)
- 8 a. Discuss the following terms:
- Apressic Apr i) Basic blocks ii) Next use information (iii) Flow graph. (10 Marks)
 - b. With example, explain common subexpression and dead code elimination methods.

(10 Marks)